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Prediction of Transport Properties of Dense Gases 
and Liquids by the Peng-Robinson (PR) Equation 
of State a 

W. Sheng, 2'3 G.-J. Chen, 2'4 and H.-C. Lu 2 

An attempt is made in this work to combine the Enskog theory of transport 
properties with the simple cubic Peng-Robinson (PR) equation of state. The PR 
equation of state provides the density dependence of the equilibrium radial 
distribution function. A slight empirical modification of the Enskog equation is 
proposed to improve the accuracy of correlation of thermal conductivity and 
viscosity coefficient for dense gases and liquids. Extensive comparisons with 
experimental data of pure fluids are made for a wide range of fluid states with 
temperatures from 90 to 500 K and pressures from 1 to 740 atm. The total 
average absolute deviations are 2.67% and 2.02% for viscosity and thermal 
conductivity predictions, respectively. The proposed procedure for predicting 
viscosity and thermal conductivity is simple and straightforward. It requires 
only critical parameters and acentric factors for the fluids. 

KEY WORDS: Enskog theory; equation of state; fluids (dense); thermal 
conductivity; viscosity. 

1. I N T R O D U C T I O N  

T h e  p rope r t i e s  o f  a f luid can  be  d iv ided  in to  two  kinds ,  e q u i l i b r i u m  p r o p e r -  

ties and  t r a n s p o r t  p roper t i es .  T h e  p r ed i c t i ons  of  e q u i l i b r i u m  p rope r t i e s  of  

f luids h a v e  been  m a d e  grea t  ' p rogress  in recen t  years.  M o r e  a n d  m o r e  
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equations of state are appearing in the literature. The equation of state can 
be used accurately to predict the equilibrium properties, such as density, 
enthalpy, vapor pressure, fugacity and fugacity coefficient, vapor liquid 
equilibrium, and all kinds of excess properties. Furthermore, the 
application of equations of state is not only accurate but very convenient. 
The simplest equation of state of a real fluid is in the form of cubic in 
volume. Another important advantage of using an equation of state is that 
it can provide a unique and consistent model for all equilibrium properties. 
One of the most popular cubic equations of state is that proposed by Peng 
and Robinson (PR) [1] a dozen years ago. The PR equation is widely 
used in chemical engineering process simulation, design, and optimization. 

On the other hand, transport properties are also important quantities 
required in engineering design for production, fluid transportation, and 
processing. There are a lot of articles about the correlation of viscosity and 
conductivity. However, our understanding of the transport properties is far 
behind that of equilibrium properties. There is no satisfactory theory of 
transport properties of real dense gases and liquids. The difficulties we face 
in the study of transport properties are twofold: one is the inherent 
difficulties involved in accurate measurements, and the other is the com- 
plexity involved in theoretical treatments. Therefore, the generally used 
correlations of transport coefficient are either empirical or based on some 
theoretical foundation. A priori, one would expect a theoretically based 
correlation to be more satisfactory in that better accuracy may be obtained 
and fewer difficulties might be encountered with extrapolations outside the 
range of correlation. 

Enskog [2, 3] developed a popular theory for the transport properties 
of dense gas based on the distribution function. However, the Enskog 
theory was proposed for rigid spherical molecules. For real gases, some 
modification is needed. Following the Enskog theory, many correlations 
have been proposed in the form of the reduced density and reduced tem- 
perature. A compilation of such correlations can be found in the book of 
Reid et al. [4]. Among those, Sengers I-5] examined the Enskog theory 
with an emphasis on the behavior of transport properties in the critical 
region. Cohen and Sandler [6] developed an empirical correlation for den- 
sity and temperature dependence. Hanley et al. 1-7, 8] and DiPippo et al. 
[9] also developed similar correlations. Most of these works have the 
emphasis on the relation between density and pressure at fixed tem- 
perature. The equations of state provide a good description of density, 
pressure, and temperature. We try to combine the Enskog theory with the 
popular simple cubic equation of state in this work. The modification is 
made only on the coefficient of Enskog equations of thermal conductivity 
and viscosity coefficient. 
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2. T H E O R Y  

Many calculations of the transport coefficients at elevated densities are 
based on the theory of Enskog [-2] for a dense gas of rigid spherical 
molecules. According to the theory of Enskog the viscosity coefficient t/and 
the thermal conductivity 2 for a gas of rigid spheres are represented by the 
following expressions: 

and 

~1 = tlobp[1/bpz + 0.800 + 0.7614(bpz) 2] 

2 = ZobpE 1/bpz + 1.200 + 0.755(bpz) 2] 

(1) 

where t/0 and )~o are the dilute-gas viscosity coefficient and thermal conduc- 
tivity, p is the molecular density, b = 21ra3/3 is the covolume, where a is the 
molecular diameter, and )C is the value of the equilibrium radial distribution 
function at a distance a from the center of an individual molecule, for 
which a number of coefficients in its virial expansion are known: 

z=l.+O.6250bp+O.2869(bp)2+O.115(bp)3+O.lO9(bp)4+ ... (3) 

However, the interaction between the real molecules is not of a rigid- 
sphere nature. Equations (1) and (2) cannot be used directly for real gases. 
Enskog [2] suggested that Eqs. (1) and (2) can be used to represent the 
transport coefficients of a real gas over a large density range by attributing 
effective values to the parameters b and )~ deduced from the compressibility 
isotherms of the substance. In this way one can also partially account for 
the influence of attractive forces between the molecules. Enskog suggested 
that bpz should be determined from compressibility experiments, using the 
"thermal pressure": 

b 1 /'OVP'~ p ) ~ = ~ , ~ ) v - 1  (4) 

where R is the gas constant. P, V, and T are the pressure, volume, and tem- 
perature, respectively. In order that the modified Boltzmann equation 
introduced by Enskog reduces to the ordinary Boltzmann equation at low 
densities, one should still require 

lim Z = 1 (5)  
p ~ O  

Many correlations have been suggested in the literature [6] for bpL 
However, we try another approach here with the equation of state directly 
incorporated into Eqs. (t) and (2). 

(2) 
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The Peng-Robinson [1]  (PR) equation of state is simple in cubic 
form of volume as: 

RT a( T) 
P = - -  (6) V-b '  V(V+b')+b'(V-b') 

where a(T) is the attractive parameter, expressed as a function of tem- 
perature, the critical parameters, and the acentric factor of substance. 

a(T) = a(Tc) ~(T) 

a(Tc) = 0.45724 R2T2 
Pc 

~z(T) = [1 + m(1 -- T~ 2 

m = 0.37464 + 1.54226(.o -- 0.26997(.o 2 

(7) 

(8) 

(9) 

(lO) 

where Tc, Pc, and ~o are the critical temperature, critical pressure, and 
acentric factor, respectively. The reduced temperature is defined as 
Tr = T/Tc. 

b' is also correlated with the critical parameters and treated as tem- 
perature independent. 

RG 
b ' = 0 . 0 7 7 8 0 - -  (11) 

Pc 

Substituting Eq. (6) into Eq. (4) the following equation can be obtained: 

b V[vR~b, a(Tc)[m+m2(1-T~ 1 ] 
PZ=R -) V(V+b')+b'(V-b') (TTc) ~ (12) 

With the limitation of Eq. (5) 

b = lim bx 
p ~ 0  

= lim ~- V2 a(Tc)[rn+m2(1-'4/--~)] V2 1 
V(V+b'lu 

a(Tc)[m +m2(1 - x / ~ ) ]  
=b'-~ 

So the following equation can be obtained: 

l__(b, a(To)[m+m2(1-,,/~)]) 

(13) 

(14) 
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With Eqs. (12) and (14), Eqs. (1) and (2) can be calculated directly. 
This procedure was carried out for the simple fluids. Comparison of the 
behavior thus predicted with the experimental data is presented in Figs. 1 
and 2 for methane. The dashed curves represent the predictions of the 
above procedure. It is seen that the predicted values are systematically 
higher than the values of experimental data. The Enskog theory is 
developed for rigid-sphere molecules. Some modifications must be 
introduced to improve the accuracy of the correlation for real fluids. It is 
found empirically that only a substance-dependent constant is required. 
Equation (1) is modified as 

[ 1.000 + 0.7614(bpz) ] rl = rlo( bP ) L (~pz) + A (15) 

where A is a substance-dependent parameter and independent of tem- 
perature and pressure. The calculated results with this modification are also 
shown in Fig. 1 (solid curve). 
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Fig. 1. Density dependence of viscosity of methane. 
Comparison of the calculated results using the Enskog 
theory and modified Enskog theory (developed in this 
work) with the literature data. Data taken from Hanley 
et al. [10]. 



138 Sheng, Chen, and Lu 

3 

E- 

ll0 

100 

90 

80 

7O 

60 
0,0 

/ 
+ data taken from Hanley eL al[10] / z  

Modified Enskog theory / 

-- -- -- Enskog theory / 

Temperature 480 K / 

/ 

/ 
/ 

/ + 

I i i i r 
2.0 4.0 60 80 10.0 

Density, rnol,l  -~ 

Fig. 2. Density dependence of thermal conductivity of 
methane. Comparison of calculated results using the 
Enskog theory and modified Enskog theory (developed 
in this work) with the literature data. Data taken from 
Hanley et al. [10]. 

The Enskog theory describes the density dependence only of the 
thermal conductivity resulting from the translational degree of freedom. 
Dymond [-15] studied this problem recently for methane. The internal 
degrees of freedom of the molecules must be taken into account, for its 
contribution will vary much less with increasing density. The thermal 
conductivity can be written as the summation of two parts: 

.~ -- ).tr -k- 2int (16) 

where 

,~tr = ~ 0 [ -  ! . 0 0  ..~ 1.200(bpz) + 0.755(bpz) z ] ( 1 7 )  

represents the contribution of the translational degrees of freedom only and 

= 20 - 15 b/0 (18) 2int 

where 2 tr and / l i n t  a r e  the translational and internal contributions to the 
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total thermal conductivity and k is the Boltzmann constant. Combining 
Eqs. (17), (18), and (16) gives 

2 = 2  o 1.00+ D t- (19) 

where D = 420/15kr/o, and for monatomic molecules, 

2--2~ : 2.5 Cv (20) 
t/o M 

where M is molecular weight and Cv is heat capacity and a function of 
temperature. 

3. CALCULATED RESULTS 

Equations (15) and (19) are the basis of the present calculation where 
bp and bpg are calculated through Eqs. (12) and (14). The critical tem- 
perature, critical pressure, and acentric factor of the substance are required 

Table I. Comparisons  of Calculated Results for Argon a 

)~ q 

No. T (K) N D P  P, range (atm) AAD % AAD % 

1 90 18 1-98 1.17 
2 100 18 1-296 2.21 
3 110 18 1-296 3.05 
4 130 18 1-296 3.62 
5 220 15 1-296 5.39 4.08 
6 250 15 1 296 4.00 3.01 
7 280 16 1-493 3.13 3.03 
8 300 17 1-740 3.29 3.17 
9 330 17 1-740 2.38 2.49 

10 380 17 1 740 1.84 2.41 
11 400 17 1-740 1.63 1.90 
12 430 17 1 740 1.38 1.86 
13 450 17 1 740 1.08 1.84 
14 480 17 1-740 0.80 1.80 
15 500 17 1-740 1.00 1.60 

Overall 90-500 25I 1-740 1.86 2.37 

2, thermal conductivity; r/, viscosity; NDP,  number  of data points; AAD %, 
(1 /NDP) Z i  [calculated - experimental)/experimental[ i 100 %. Data  source: Younglove et al. 
[123. 
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to calculate the parameters a and b' in the PR equation of state. These sub- 
stance-dependent values are found in the critical book of Reid et al. I-4]. 
The calculating procedure is to solve the PR equation of state to obtain the 
volume (or density) under certain temperature and pressures; then bp 
and bpx can be directly calculated with Eqs. (14) and (12). The viscosity 
coefficient and the thermal conductivity can be obtained simultaneously 
through Eqs. (15) and (19). This calculation procedure is simple and 
straightforward. 

The parameters A and D are very important to the accuracy of predic- 
tions. It is found that parameter A can be treated as temperature and 
pressure independent and only substance dependent. But parameter D is 
temperature and substance dependent. The value of D is near unity for 
argon, compared to a range of 2 to 7 for propane. This can be seen 

Table II. Comparisons of Calculated Results for Methane ~ 

No. T (K) NDP P, range (atm) AAD % AAD % 

1 115 15 1-98 0.72 
2 125 17 1-197 1.12 
3 135 16 1-197 1.28 
4 145 17 1-197 1.72 
5 170 17 1-20 0.45 
6 180 18 1-296 2.70 
7 200 16 1-150 2.33 
8 220 16 1-150 1.44 2.89 
9 240 18 1-296 1.01 2.85 

10 260 18 1-296 1.24 3.02 
11 285 18 1-296 1.02 2.80 
12 300 18 1-296 0.89 2.46 
13 320 19 1-493 1.12 2.63 
14 340 20 1-740 1.00 2.20 
15 360 20 1-740 0.91 2.09 
16 380 20 1-740 0:82 1.97 
17 400 20 1-740 0.74 1.83 
18 420 20 1-740 0.66 1.71 
19 440 20 1-740 0.61 1.46 
20 460 20 1-740 0.56 1.54 
21 480 20 1-740 0.51 1.52 
22 500 20 1-740 0.47 1.42 

Overall 115-500 386 1-740 1.06 2.10 

2, thermal conductivity; ~/, viscosity; NDP, number of data points; AAD %, 
(lfNDP)Y~ I(calculated-experimental)/experimentall~ 100%. Data source: Hanley et al. 
1-10]. 
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Table IlL Comparisons of Calculated Results for Ethane a 
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2 q 
No. T (K) NDP P, range (atm) AAD % AAD % 

1 340 17 1-197 2.75 2,85 
2 360 18 1-296 1.96 2,76 
3 380 18 1-296 0.87 2,86 
4 400 19 1-493 0.96 2,63 
5 420 19 1-493 1.26 2,40 
6 440 19 1-493 1.49 2.30 
7 460 19 1-493 1.94 2.29 
8 480 19 1-493 2.17 2.19 
9 500 19 1-393 2.33 2,08 

Overall 340-500 167 1-493 1.75 2.48 

2, thermal conductivity; r/, viscosity; NDP, number of data points; AAD %, 
(1/NDP) ~i j(calculated - experimental)/experimentalJ~ 100 %. Data source: Hanley et al. 

[140. 

Table IV. Comparisons of Calculated Results for Propane ~ 

2 
No. T(K) NDP P, range (atm) AAD % AAD % 

1 140 21 1-493 0.59 
2 160 21 1-493 0.18 
3 180 21 1-493 0,36 
4 200 21 1-493 0.76 
5 220 21 1-493 1.15 
6 240 21 1-493 1.71 
7 260 21 1-493 2.13 
8 280 21 1-493 3.75 
9 360 21 1-493 2.36 

10 380 21 1-493 2.36 
11 400 21 1-493 2.94 
12 420 21 1-493 1.65 
13 440 21 1-493 1.44 
14 460 21 1-493 1.98 
15 480 21 1-493 2.34 
16 500 21 1-493 2.72 

Overall 140--500 336 1-493 1.78 

4,51 
3.79 
3.68 
3.61 
3.41 
3.25 
3.71 

a2, thermal conductivity; r/, viscosity; NDP, number of data points; AAD %, 
(1/NDP) Zl [(calculated-experimental)/experimentalJi 100%. Data source: Hollan et al. 
[11]. 
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obviously from Eq. (20), where M isdependent on substance and Cv is a 
function of temperature. 

To test the prediction procedure proposed here, we have used the 
viscosity and thermal conductivity data for Ar, C H 4 ,  C 2 H 4 ,  C 2 H 6 ,  and 
C3H8; all of the transport properties of these systems have been critically 
evaluated by a single group at NBS (Hanley et al. [10~14]) over the tem- 
perature range studied from low up to 500 K and pressure range from 1 to 
750 arm. In the all cases the agreement between experiment and prediction 
is quite good, especially when one takes into account that the experimental 
uncertainty of the transport property data at high densities and that errors 
in the calculation of the density (i.e., by PR equation of state) are also 
reflected in the transport property predictions. The errors are increased as 
the critical point is approached. This is mainly because the PR equation of 
state cannot be used to describe the critical region; in other words, the 
pressure dependence of density in the critical region provided by the PR 
equation is incorrect. 

As shown in Figs. 1 and 2, much better agreement with the experimen- 
tal data is given by the modification of this work. In fact, for the typical 
system mathane the overall absolute average deviation in the predicted 
viscosity is only 2.07 % and that in the thermal conductivity is 1.06 % over 
a very large density range (from dilute gas to dense liquid) and 380 K 

Table V. Comparisons of Calculated Results for Ethelene a 

2 
No. T (K) NDP P, range (atm) AAD % AAD % 

1 280 10 1-20 2.27 
2 300 13 1-20 3.17 
3 320 16 1-40 5.39 3.22 
4 340 20 1-60 5.19 3.51 
5 360 21 1-89 4.92 3.13 
6 380 21 1-98 4.73 2.98 
7 400 21 1-97 4.57 2.79 
8 420 21 1-197 4.41 2.53 
9 440 21 1-296 4.27 2.23 

10 460 21 1-394 4.06 1.95 
11 480 21 1-483 3.88 1.70 
12 500 21 1-493 3.61 1.49 

Overall 265-500 227 1-493 4.50 2.55 

a2, thermal conductivity; q, viscosity; NDP, number of data points; AAD %, 
(1/NDP) Zi I(calculated-experimental)/experimentalli 100%. Data source: Hollan et al. 
[13]. 
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range in temperature (except those near the critical region), The results are 
better than the 2.36% for viscosity and 1.92% for thermal conductivity 
reported by Cohen and Sandier I-6] using their correlations for the same 
data source but with a narrow temperature range (the temperature range is 
only 250 K in their work). All the predicted results are given in Tables I 
to V. The data reported in the literature are regular in interval of tem- 
perature and pressure. The range of the data used in this work are given in 
Tables I to V. 

4. CONCLUSION AND DISCUSSION 

Enskog theory is successfully combined with the PR equation of state 
in this work. It provides a unique and consistent predictive method for 
both transport properties and equilibrium properties. It is proved that this 
predictive method can be used to estimate the viscosity and thermal con- 
ductivity of pure fluids over a wide range of fluid states, from dilute gas to 
dense liquid. The calculation procedure is simple and straightforward. It 
requires only the critical temperature, critical pressure, and acentric factor 
of the substances. 

The present method cannot be used in the region near the critical 
point. This inadequacy is due to two things: one is that the PR equation 
cannot be used in the critical region, and furthermore, none of the 
analytical equations of state can be used in the critical region [-16], and 
another is that the Enskog theory does not account at all for the thermal 
conductivity anomaly in the critical region as discussed by Sengers I-5]. 

The prediction procedure proposed here must be extended to a wider 
range of systems to generalize the correlation of parameters d and D. And 
it is also important to extend this procedure to mixtures for practical use in 
the engineering. The deviation of the predictions becomes large as the 
pressure become large. Some of the more accurate simple equations of state 
are expected to give better results. It is obvious that the proposed 
procedure is easy to extend to use with other equations of state. 
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